Files
wiki/education/mathematics/binomial-theorem.html

266 lines
394 KiB
HTML

<!--
title: 二項式定理 (Binomial Theorem)
description:
published: true
date: 2026-02-11T17:34:26.679Z
tags:
editor: ckeditor
dateCreated: 2026-02-11T17:24:46.603Z
-->
<h2><span style="font-family:Arial, Helvetica, sans-serif;">Fundamental Principle</span></h2>
<p><span style="font-family:Arial, Helvetica, sans-serif;">The product of first n positive integer, can be called as n factorial, and noted as&nbsp;n!</span></p>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<p><span style="font-family:Arial, Helvetica, sans-serif;">Note, the special case defined,&nbsp;</span></p>
<figure class="image"><img src=""></figure>
<p>&nbsp;</p>
<p><span style="font-family:Arial, Helvetica, sans-serif;">When we pick r objects from n objects, if the order matters, it is called as permutation, and we notate it as&nbsp;nPr.</span></p>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<p>&nbsp;</p>
<p><span style="font-family:Arial, Helvetica, sans-serif;">If the order is unimportant, we can use combination, which is&nbsp;nCr.</span></p>
<p><span style="font-family:Arial, Helvetica, sans-serif;">The extra&nbsp;r! is the permutation in the specific set drawn out.</span></p>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<p>&nbsp;</p>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<p>&nbsp;</p>
<p><span style="font-family:Arial, Helvetica, sans-serif;">Note,</span></p>
<figure class="image"><img src=""></figure>
<p><span style="font-family:Arial, Helvetica, sans-serif;">There will be n+1 th term.</span></p>
<p><span style="font-family:Arial, Helvetica, sans-serif;">The sum of power of x and y will equal to n.</span></p>
<p><span style="font-family:Arial, Helvetica, sans-serif;">The r+1 th term can be called as the general term, in the descending power of x.</span></p>
<figure class="image"><img src=""></figure>
<p><span style="font-family:Arial, Helvetica, sans-serif;">The coefficients, r=0, 1 … are called binomial coefficients.</span></p>
<p>&nbsp;</p>
<h3><span style="font-family:Arial, Helvetica, sans-serif;">E1 Example</span></h3>
<p><span style="font-family:Arial, Helvetica, sans-serif;"><strong>Q</strong></span></p>
<p><span style="font-family:Arial, Helvetica, sans-serif;">Expand&nbsp;</span></p>
<figure class="image"><img src=""></figure>
<p><span style="font-family:Arial, Helvetica, sans-serif;">in the descending powers of x.</span></p>
<p>&nbsp;</p>
<p><span style="font-family:Arial, Helvetica, sans-serif;"><strong>A</strong></span></p>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<p>&nbsp;</p>
<h3><span style="font-family:Arial, Helvetica, sans-serif;">E2 Example</span></h3>
<p><span style="font-family:Arial, Helvetica, sans-serif;"><strong>Q</strong></span></p>
<p><span style="font-family:Arial, Helvetica, sans-serif;">Expand&nbsp;</span></p>
<figure class="image"><img src=""></figure>
<p><span style="font-family:Arial, Helvetica, sans-serif;">in the descending powers of x.</span></p>
<p>&nbsp;</p>
<p><span style="font-family:Arial, Helvetica, sans-serif;"><strong>A</strong></span></p>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<p>&nbsp;</p>
<h3><span style="font-family:Arial, Helvetica, sans-serif;">E3 Example</span></h3>
<p><span style="font-family:Arial, Helvetica, sans-serif;"><strong>Q</strong></span></p>
<p><span style="font-family:Arial, Helvetica, sans-serif;">Expand&nbsp;</span></p>
<figure class="image"><img src=""></figure>
<p><span style="font-family:Arial, Helvetica, sans-serif;">in the ascending powers of x.</span></p>
<p>&nbsp;</p>
<p><span style="font-family:Arial, Helvetica, sans-serif;"><strong>A</strong></span></p>
<figure class="image"><img src=""></figure>
<p><span style="font-family:Arial, Helvetica, sans-serif;">&nbsp;&nbsp;&nbsp;&nbsp;</span></p>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<p>&nbsp;</p>
<h2><span style="font-family:Arial, Helvetica, sans-serif;">Pascal Triangle</span></h2>
<figure class="table">
<table style="border-bottom:none;border-left:none;border-right:none;border-top:none;">
<tbody>
<tr>
<td style="border-bottom:1.0pt solid windowtext;border-left:1.0pt solid windowtext;border-right:1.0pt solid windowtext;border-top:1.0pt solid windowtext;padding:0mm 5.4pt;vertical-align:top;width:51.95pt;"><span style="font-family:Arial, Helvetica, sans-serif;">0</span></td>
<td style="border-bottom:1.0pt solid windowtext;border-left:1.0pt none windowtext;border-right:1.0pt solid windowtext;border-top:1.0pt solid windowtext;padding:0mm 5.4pt;vertical-align:top;width:51.95pt;"><span style="font-family:Arial, Helvetica, sans-serif;">1</span></td>
<td style="border-bottom:1.0pt solid windowtext;border-left:1.0pt none windowtext;border-right:1.0pt solid windowtext;border-top:1.0pt solid windowtext;padding:0mm 5.4pt;vertical-align:top;width:52.0pt;">&nbsp;</td>
<td style="border-bottom:1.0pt solid windowtext;border-left:1.0pt none windowtext;border-right:1.0pt solid windowtext;border-top:1.0pt solid windowtext;padding:0mm 5.4pt;vertical-align:top;width:52.0pt;">&nbsp;</td>
<td style="border-bottom:1.0pt solid windowtext;border-left:1.0pt none windowtext;border-right:1.0pt solid windowtext;border-top:1.0pt solid windowtext;padding:0mm 5.4pt;vertical-align:top;width:52.0pt;">&nbsp;</td>
<td style="border-bottom:1.0pt solid windowtext;border-left:1.0pt none windowtext;border-right:1.0pt solid windowtext;border-top:1.0pt solid windowtext;padding:0mm 5.4pt;vertical-align:top;width:52.0pt;">&nbsp;</td>
<td style="border-bottom:1.0pt solid windowtext;border-left:1.0pt none windowtext;border-right:1.0pt solid windowtext;border-top:1.0pt solid windowtext;padding:0mm 5.4pt;vertical-align:top;width:52.0pt;">&nbsp;</td>
<td style="border-bottom:1.0pt solid windowtext;border-left:1.0pt none windowtext;border-right:1.0pt solid windowtext;border-top:1.0pt solid windowtext;padding:0mm 5.4pt;vertical-align:top;width:50.9pt;">&nbsp;</td>
</tr>
<tr>
<td style="border-bottom:1.0pt solid windowtext;border-left:1.0pt solid windowtext;border-right:1.0pt solid windowtext;border-top:1.0pt none windowtext;padding:0mm 5.4pt;vertical-align:top;width:51.95pt;"><span style="font-family:Arial, Helvetica, sans-serif;">1</span></td>
<td style="border-bottom:1.0pt solid windowtext;border-left:none;border-right:1.0pt solid windowtext;border-top:none;padding:0mm 5.4pt;vertical-align:top;width:51.95pt;"><span style="font-family:Arial, Helvetica, sans-serif;">1</span></td>
<td style="border-bottom:1.0pt solid windowtext;border-left:none;border-right:1.0pt solid windowtext;border-top:none;padding:0mm 5.4pt;vertical-align:top;width:52.0pt;"><span style="font-family:Arial, Helvetica, sans-serif;">1</span></td>
<td style="border-bottom:1.0pt solid windowtext;border-left:none;border-right:1.0pt solid windowtext;border-top:none;padding:0mm 5.4pt;vertical-align:top;width:52.0pt;">&nbsp;</td>
<td style="border-bottom:1.0pt solid windowtext;border-left:none;border-right:1.0pt solid windowtext;border-top:none;padding:0mm 5.4pt;vertical-align:top;width:52.0pt;">&nbsp;</td>
<td style="border-bottom:1.0pt solid windowtext;border-left:none;border-right:1.0pt solid windowtext;border-top:none;padding:0mm 5.4pt;vertical-align:top;width:52.0pt;">&nbsp;</td>
<td style="border-bottom:1.0pt solid windowtext;border-left:none;border-right:1.0pt solid windowtext;border-top:none;padding:0mm 5.4pt;vertical-align:top;width:52.0pt;">&nbsp;</td>
<td style="border-bottom:1.0pt solid windowtext;border-left:none;border-right:1.0pt solid windowtext;border-top:none;padding:0mm 5.4pt;vertical-align:top;width:50.9pt;">&nbsp;</td>
</tr>
<tr>
<td style="border-bottom:1.0pt solid windowtext;border-left:1.0pt solid windowtext;border-right:1.0pt solid windowtext;border-top:1.0pt none windowtext;padding:0mm 5.4pt;vertical-align:top;width:51.95pt;"><span style="font-family:Arial, Helvetica, sans-serif;">2</span></td>
<td style="border-bottom:1.0pt solid windowtext;border-left:none;border-right:1.0pt solid windowtext;border-top:none;padding:0mm 5.4pt;vertical-align:top;width:51.95pt;"><span style="font-family:Arial, Helvetica, sans-serif;">1</span></td>
<td style="border-bottom:1.0pt solid windowtext;border-left:none;border-right:1.0pt solid windowtext;border-top:none;padding:0mm 5.4pt;vertical-align:top;width:52.0pt;"><span style="font-family:Arial, Helvetica, sans-serif;">2</span></td>
<td style="border-bottom:1.0pt solid windowtext;border-left:none;border-right:1.0pt solid windowtext;border-top:none;padding:0mm 5.4pt;vertical-align:top;width:52.0pt;"><span style="font-family:Arial, Helvetica, sans-serif;">1</span></td>
<td style="border-bottom:1.0pt solid windowtext;border-left:none;border-right:1.0pt solid windowtext;border-top:none;padding:0mm 5.4pt;vertical-align:top;width:52.0pt;">&nbsp;</td>
<td style="border-bottom:1.0pt solid windowtext;border-left:none;border-right:1.0pt solid windowtext;border-top:none;padding:0mm 5.4pt;vertical-align:top;width:52.0pt;">&nbsp;</td>
<td style="border-bottom:1.0pt solid windowtext;border-left:none;border-right:1.0pt solid windowtext;border-top:none;padding:0mm 5.4pt;vertical-align:top;width:52.0pt;">&nbsp;</td>
<td style="border-bottom:1.0pt solid windowtext;border-left:none;border-right:1.0pt solid windowtext;border-top:none;padding:0mm 5.4pt;vertical-align:top;width:50.9pt;">&nbsp;</td>
</tr>
<tr>
<td style="border-bottom:1.0pt solid windowtext;border-left:1.0pt solid windowtext;border-right:1.0pt solid windowtext;border-top:1.0pt none windowtext;padding:0mm 5.4pt;vertical-align:top;width:51.95pt;"><span style="font-family:Arial, Helvetica, sans-serif;">3</span></td>
<td style="border-bottom:1.0pt solid windowtext;border-left:none;border-right:1.0pt solid windowtext;border-top:none;padding:0mm 5.4pt;vertical-align:top;width:51.95pt;"><span style="font-family:Arial, Helvetica, sans-serif;">1</span></td>
<td style="border-bottom:1.0pt solid windowtext;border-left:none;border-right:1.0pt solid windowtext;border-top:none;padding:0mm 5.4pt;vertical-align:top;width:52.0pt;"><span style="font-family:Arial, Helvetica, sans-serif;">3</span></td>
<td style="border-bottom:1.0pt solid windowtext;border-left:none;border-right:1.0pt solid windowtext;border-top:none;padding:0mm 5.4pt;vertical-align:top;width:52.0pt;"><span style="font-family:Arial, Helvetica, sans-serif;">3</span></td>
<td style="border-bottom:1.0pt solid windowtext;border-left:none;border-right:1.0pt solid windowtext;border-top:none;padding:0mm 5.4pt;vertical-align:top;width:52.0pt;"><span style="font-family:Arial, Helvetica, sans-serif;">1</span></td>
<td style="border-bottom:1.0pt solid windowtext;border-left:none;border-right:1.0pt solid windowtext;border-top:none;padding:0mm 5.4pt;vertical-align:top;width:52.0pt;">&nbsp;</td>
<td style="border-bottom:1.0pt solid windowtext;border-left:none;border-right:1.0pt solid windowtext;border-top:none;padding:0mm 5.4pt;vertical-align:top;width:52.0pt;">&nbsp;</td>
<td style="border-bottom:1.0pt solid windowtext;border-left:none;border-right:1.0pt solid windowtext;border-top:none;padding:0mm 5.4pt;vertical-align:top;width:50.9pt;">&nbsp;</td>
</tr>
<tr>
<td style="border-bottom:1.0pt solid windowtext;border-left:1.0pt solid windowtext;border-right:1.0pt solid windowtext;border-top:1.0pt none windowtext;padding:0mm 5.4pt;vertical-align:top;width:51.95pt;"><span style="font-family:Arial, Helvetica, sans-serif;">4</span></td>
<td style="border-bottom:1.0pt solid windowtext;border-left:none;border-right:1.0pt solid windowtext;border-top:none;padding:0mm 5.4pt;vertical-align:top;width:51.95pt;"><span style="font-family:Arial, Helvetica, sans-serif;">1</span></td>
<td style="border-bottom:1.0pt solid windowtext;border-left:none;border-right:1.0pt solid windowtext;border-top:none;padding:0mm 5.4pt;vertical-align:top;width:52.0pt;"><span style="font-family:Arial, Helvetica, sans-serif;">4</span></td>
<td style="border-bottom:1.0pt solid windowtext;border-left:none;border-right:1.0pt solid windowtext;border-top:none;padding:0mm 5.4pt;vertical-align:top;width:52.0pt;"><span style="font-family:Arial, Helvetica, sans-serif;">6</span></td>
<td style="border-bottom:1.0pt solid windowtext;border-left:none;border-right:1.0pt solid windowtext;border-top:none;padding:0mm 5.4pt;vertical-align:top;width:52.0pt;"><span style="font-family:Arial, Helvetica, sans-serif;">4</span></td>
<td style="border-bottom:1.0pt solid windowtext;border-left:none;border-right:1.0pt solid windowtext;border-top:none;padding:0mm 5.4pt;vertical-align:top;width:52.0pt;"><span style="font-family:Arial, Helvetica, sans-serif;">1</span></td>
<td style="border-bottom:1.0pt solid windowtext;border-left:none;border-right:1.0pt solid windowtext;border-top:none;padding:0mm 5.4pt;vertical-align:top;width:52.0pt;">&nbsp;</td>
<td style="border-bottom:1.0pt solid windowtext;border-left:none;border-right:1.0pt solid windowtext;border-top:none;padding:0mm 5.4pt;vertical-align:top;width:50.9pt;">&nbsp;</td>
</tr>
<tr>
<td style="border-bottom:1.0pt solid windowtext;border-left:1.0pt solid windowtext;border-right:1.0pt solid windowtext;border-top:1.0pt none windowtext;padding:0mm 5.4pt;vertical-align:top;width:51.95pt;"><span style="font-family:Arial, Helvetica, sans-serif;">5</span></td>
<td style="border-bottom:1.0pt solid windowtext;border-left:none;border-right:1.0pt solid windowtext;border-top:none;padding:0mm 5.4pt;vertical-align:top;width:51.95pt;"><span style="font-family:Arial, Helvetica, sans-serif;">1</span></td>
<td style="border-bottom:1.0pt solid windowtext;border-left:none;border-right:1.0pt solid windowtext;border-top:none;padding:0mm 5.4pt;vertical-align:top;width:52.0pt;"><span style="font-family:Arial, Helvetica, sans-serif;">5</span></td>
<td style="border-bottom:1.0pt solid windowtext;border-left:none;border-right:1.0pt solid windowtext;border-top:none;padding:0mm 5.4pt;vertical-align:top;width:52.0pt;"><span style="font-family:Arial, Helvetica, sans-serif;">10</span></td>
<td style="border-bottom:1.0pt solid windowtext;border-left:none;border-right:1.0pt solid windowtext;border-top:none;padding:0mm 5.4pt;vertical-align:top;width:52.0pt;"><span style="font-family:Arial, Helvetica, sans-serif;">10</span></td>
<td style="border-bottom:1.0pt solid windowtext;border-left:none;border-right:1.0pt solid windowtext;border-top:none;padding:0mm 5.4pt;vertical-align:top;width:52.0pt;"><span style="font-family:Arial, Helvetica, sans-serif;">5</span></td>
<td style="border-bottom:1.0pt solid windowtext;border-left:none;border-right:1.0pt solid windowtext;border-top:none;padding:0mm 5.4pt;vertical-align:top;width:52.0pt;"><span style="font-family:Arial, Helvetica, sans-serif;">1</span></td>
<td style="border-bottom:1.0pt solid windowtext;border-left:none;border-right:1.0pt solid windowtext;border-top:none;padding:0mm 5.4pt;vertical-align:top;width:50.9pt;">&nbsp;</td>
</tr>
<tr>
<td style="border-bottom:1.0pt solid windowtext;border-left:1.0pt solid windowtext;border-right:1.0pt solid windowtext;border-top:1.0pt none windowtext;padding:0mm 5.4pt;vertical-align:top;width:51.95pt;"><span style="font-family:Arial, Helvetica, sans-serif;">6</span></td>
<td style="border-bottom:1.0pt solid windowtext;border-left:none;border-right:1.0pt solid windowtext;border-top:none;padding:0mm 5.4pt;vertical-align:top;width:51.95pt;"><span style="font-family:Arial, Helvetica, sans-serif;">1</span></td>
<td style="border-bottom:1.0pt solid windowtext;border-left:none;border-right:1.0pt solid windowtext;border-top:none;padding:0mm 5.4pt;vertical-align:top;width:52.0pt;"><span style="font-family:Arial, Helvetica, sans-serif;">6</span></td>
<td style="border-bottom:1.0pt solid windowtext;border-left:none;border-right:1.0pt solid windowtext;border-top:none;padding:0mm 5.4pt;vertical-align:top;width:52.0pt;"><span style="font-family:Arial, Helvetica, sans-serif;">15</span></td>
<td style="border-bottom:1.0pt solid windowtext;border-left:none;border-right:1.0pt solid windowtext;border-top:none;padding:0mm 5.4pt;vertical-align:top;width:52.0pt;"><span style="font-family:Arial, Helvetica, sans-serif;">20</span></td>
<td style="border-bottom:1.0pt solid windowtext;border-left:none;border-right:1.0pt solid windowtext;border-top:none;padding:0mm 5.4pt;vertical-align:top;width:52.0pt;"><span style="font-family:Arial, Helvetica, sans-serif;">15</span></td>
<td style="border-bottom:1.0pt solid windowtext;border-left:none;border-right:1.0pt solid windowtext;border-top:none;padding:0mm 5.4pt;vertical-align:top;width:52.0pt;"><span style="font-family:Arial, Helvetica, sans-serif;">6</span></td>
<td style="border-bottom:1.0pt solid windowtext;border-left:none;border-right:1.0pt solid windowtext;border-top:none;padding:0mm 5.4pt;vertical-align:top;width:50.9pt;"><span style="font-family:Arial, Helvetica, sans-serif;">1</span></td>
</tr>
</tbody>
</table>
</figure>
<p><span style="font-family:Arial, Helvetica, sans-serif;">Two adjacent cells sum will be the new value of the next row.</span></p>
<p><span style="font-family:Arial, Helvetica, sans-serif;">For example, in row of 4, the 2<sup>nd</sup> value is 1+4=5. 3<sup>rd</sup> value is 4+6=10.</span></p>
<p>&nbsp;</p>
<h3><span style="font-family:Arial, Helvetica, sans-serif;">E4 Example</span></h3>
<p><span style="font-family:Arial, Helvetica, sans-serif;"><strong>Q</strong></span></p>
<p><span style="font-family:Arial, Helvetica, sans-serif;">In the expansion&nbsp;</span></p>
<figure class="image"><img src=""></figure>
<p><span style="font-family:Arial, Helvetica, sans-serif;">, find (1) The coefficient of&nbsp;x<sup>3</sup>. (2) The constant term.</span></p>
<p>&nbsp;</p>
<p><span style="font-family:Arial, Helvetica, sans-serif;"><strong>A</strong></span></p>
<p><span style="font-family:Arial, Helvetica, sans-serif;">The general term will be:</span></p>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<p>&nbsp;</p>
<p><span style="font-family:Arial, Helvetica, sans-serif;">(1)</span></p>
<p><span style="font-family:Arial, Helvetica, sans-serif;">Set&nbsp;</span></p>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<p><span style="font-family:Arial, Helvetica, sans-serif;">Hence, coefficient of&nbsp;x<sup>3</sup>&nbsp;is 816,293,376.</span></p>
<p>&nbsp;</p>
<p><span style="font-family:Arial, Helvetica, sans-serif;">(2)&nbsp;</span></p>
<p><span style="font-family:Arial, Helvetica, sans-serif;">Set&nbsp;</span></p>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<p><span style="font-family:Arial, Helvetica, sans-serif;">Hence, the constant term is -2,857,026,816.</span></p>
<p>&nbsp;</p>
<h3><span style="font-family:Arial, Helvetica, sans-serif;">E5 Example</span></h3>
<p><span style="font-family:Arial, Helvetica, sans-serif;"><strong>Q</strong></span></p>
<p><span style="font-family:Arial, Helvetica, sans-serif;">Let n be a positive integer that in the expansion of&nbsp;</span></p>
<figure class="image"><img src=""></figure>
<p><span style="font-family:Arial, Helvetica, sans-serif;">. The coefficient of the third term is 1,029.</span></p>
<p><span style="font-family:Arial, Helvetica, sans-serif;">Find the value of n and the coefficient of&nbsp;x<sup>12</sup>.</span></p>
<p>&nbsp;</p>
<p><span style="font-family:Arial, Helvetica, sans-serif;"><strong>A</strong></span></p>
<p><span style="font-family:Arial, Helvetica, sans-serif;">The 3<sup>rd</sup> term is 3 - 1 = 2,&nbsp;</span></p>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<p><span style="font-family:Arial, Helvetica, sans-serif;">Hence, the general term is&nbsp;</span></p>
<figure class="image"><img src=""></figure>
<p><span style="font-family:Arial, Helvetica, sans-serif;">Set 21 - 3r = 12, r = 3</span></p>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<p><span style="font-family:Arial, Helvetica, sans-serif;">The coefficient of x<sup>12</sup> is 12,005.</span></p>
<p>&nbsp;</p>
<h2><span style="font-family:Arial, Helvetica, sans-serif;">Non positive power expansion</span></h2>
<figure class="image"><img src=""></figure>
<p><span style="font-family:Arial, Helvetica, sans-serif;">If&nbsp;n &lt; 0 and |x| &lt; 1, another formula can be used:</span></p>
<figure class="image"><img src=""></figure>
<p><span style="font-family:Arial, Helvetica, sans-serif;">The negative or fractional n is a series that does not terminate, an infinite series.</span></p>
<p><span style="font-family:Arial, Helvetica, sans-serif;">The series is convergent, as the limit of it sums only when&nbsp;|x| &lt; 1.</span></p>
<p><span style="font-family:Arial, Helvetica, sans-serif;">The expansion is not valid for&nbsp;</span></p>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<p><span style="font-family:Arial, Helvetica, sans-serif;">&nbsp;can be used instead.</span></p>
<p>&nbsp;</p>
<h3><span style="font-family:Arial, Helvetica, sans-serif;">E6 Example</span></h3>
<p><span style="font-family:Arial, Helvetica, sans-serif;"><strong>Q</strong></span></p>
<p><span style="font-family:Arial, Helvetica, sans-serif;">Expand the followings in ascending power of x up to and including the term x<sup>3</sup>.</span></p>
<p><span style="font-family:Arial, Helvetica, sans-serif;">State the range of values of x for which the expansion is valid.</span></p>
<figure class="image"><img src=""></figure>
<p>&nbsp;</p>
<p><span style="font-family:Arial, Helvetica, sans-serif;"><strong>A</strong></span></p>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<p><span style="font-family:Arial, Helvetica, sans-serif;">For&nbsp;</span></p>
<figure class="image"><img src=""></figure>
<p><span style="font-family:Arial, Helvetica, sans-serif;">&nbsp;</span></p>
<h3><span style="font-family:Arial, Helvetica, sans-serif;">E7 Example</span></h3>
<p><span style="font-family:Arial, Helvetica, sans-serif;"><strong>Q</strong></span></p>
<p><span style="font-family:Arial, Helvetica, sans-serif;">Expand the followings in ascending power of x up to and including the term x<sup>3</sup>.</span></p>
<p><span style="font-family:Arial, Helvetica, sans-serif;">State the range of values of x for which the expansion is valid.</span></p>
<figure class="image"><img src=""></figure>
<p>&nbsp;</p>
<p><span style="font-family:Arial, Helvetica, sans-serif;"><strong>A</strong></span></p>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<p><span style="font-family:Arial, Helvetica, sans-serif;">For&nbsp;</span></p>
<figure class="image"><img src=""></figure>
<p><span style="font-family:Arial, Helvetica, sans-serif;">&nbsp;</span></p>
<h3><span style="font-family:Arial, Helvetica, sans-serif;">E7 Example</span></h3>
<p><span style="font-family:Arial, Helvetica, sans-serif;"><strong>Q</strong></span></p>
<p><span style="font-family:Arial, Helvetica, sans-serif;">Find the value of&nbsp;4.016<sup>7</sup> with estimation, by substituting 0.004 using the binomial expansion.</span></p>
<p><span style="font-family:Arial, Helvetica, sans-serif;">Correct the answer to the nearest 2 decimal place.</span></p>
<p>&nbsp;</p>
<p><span style="font-family:Arial, Helvetica, sans-serif;"><strong>A</strong></span></p>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<p><span style="font-family:Arial, Helvetica, sans-serif;">(correct to nearest 2 decimal places)</span></p>