145 lines
96 KiB
HTML
145 lines
96 KiB
HTML
<!--
|
|
title: 隨機變數 (Random Variable)
|
|
description:
|
|
published: true
|
|
date: 2025-12-28T19:47:43.526Z
|
|
tags:
|
|
editor: ckeditor
|
|
dateCreated: 2025-12-28T16:41:51.938Z
|
|
-->
|
|
|
|
<h2><span style="font-family:Arial, Helvetica, sans-serif;">General</span></h2>
|
|
<h3><span style="font-family:Arial, Helvetica, sans-serif;">Symmetric</span></h3>
|
|
<p><span style="font-family:Arial, Helvetica, sans-serif;">If there is a point that,</span></p>
|
|
<figure class="image"><img src=""></figure>
|
|
<p><span style="font-family:Arial, Helvetica, sans-serif;">Then,</span></p>
|
|
<figure class="image"><img src=""></figure>
|
|
<p><span style="font-family:Arial, Helvetica, sans-serif;">Is the expectation of this random variable, equal to the point of symmetry.</span></p>
|
|
<p> </p>
|
|
<h3><span style="font-family:Arial, Helvetica, sans-serif;">Median and Quantiles</span></h3>
|
|
<p><span style="font-family:Arial, Helvetica, sans-serif;">The middle value of the random variable.</span><br><span style="font-family:Arial, Helvetica, sans-serif;">For median, set <strong>p</strong> to <strong>0.5</strong>.</span></p>
|
|
<figure class="image"><img src=""></figure>
|
|
<p> </p>
|
|
<h3><span style="font-family:Arial, Helvetica, sans-serif;">Variance</span></h3>
|
|
<p><span style="font-family:Arial, Helvetica, sans-serif;">A positive quantity that measures the spread of the distribution of the random variable about its mean value.</span><br><span style="font-family:Arial, Helvetica, sans-serif;">Larger values of the variance indicate that the distribution is more spread out.</span></p>
|
|
<figure class="image"><img src=""></figure>
|
|
<p> </p>
|
|
<h3><span style="font-family:Arial, Helvetica, sans-serif;">Covariance</span></h3>
|
|
<p>Independent random variables have a covariance of zero.</p>
|
|
<figure class="image"><img src=""></figure>
|
|
<figure class="image"><img src=""></figure>
|
|
<figure class="image"><img src=""></figure>
|
|
<p> </p>
|
|
<p> </p>
|
|
<p> </p>
|
|
<figure class="table">
|
|
<table>
|
|
<tbody>
|
|
<tr>
|
|
<td style="text-align:center;width:300px;"><strong>Distribution Function</strong></td>
|
|
<td style="text-align:center;width:500px;"><span style="font-family:Arial, Helvetica, sans-serif;"><strong>Discrete</strong></span></td>
|
|
<td style="text-align:center;width:500px;"><span style="font-family:Arial, Helvetica, sans-serif;"><strong>Continuous</strong></span></td>
|
|
</tr>
|
|
<tr>
|
|
<td style="text-align:center;">
|
|
<p><span style="font-family:Arial, Helvetica, sans-serif;"><strong>Probability</strong></span></p>
|
|
<p><span style="font-family:Arial, Helvetica, sans-serif;">A set of probability value <strong>p<sub>i</sub></strong> assigned to each of the values taken by the discrete random variables <strong>x<sub>i</sub></strong>.</span></p>
|
|
</td>
|
|
<td>
|
|
<p><span style="font-family:Arial, Helvetica, sans-serif;"><strong>Probability Mass Function (PMF)</strong></span></p>
|
|
<figure class="image"><img src=""></figure>
|
|
<p><br><span style="font-family:Arial, Helvetica, sans-serif;"><strong>Probability</strong></span></p>
|
|
<figure class="image"><img src=""></figure>
|
|
<p><br><span style="font-family:Arial, Helvetica, sans-serif;"><strong>Expectation</strong></span></p>
|
|
<figure class="image"><img src=""></figure>
|
|
</td>
|
|
<td>
|
|
<p><span style="font-family:Arial, Helvetica, sans-serif;"><strong>Probability Density Function (PDF)</strong></span></p>
|
|
<p><span style="font-family:Arial, Helvetica, sans-serif;">Probabilistic properties of a continuous random variable.</span></p>
|
|
<figure class="image"><img src=""></figure>
|
|
<p> </p>
|
|
<p><span style="font-family:Arial, Helvetica, sans-serif;"><strong>Expectation</strong></span></p>
|
|
<figure class="image"><img src=""></figure>
|
|
</td>
|
|
</tr>
|
|
<tr>
|
|
<td style="text-align:center;">
|
|
<p><span style="font-family:Arial, Helvetica, sans-serif;"><strong>Cumulative</strong></span></p>
|
|
<p><span style="font-family:Arial, Helvetica, sans-serif;">A set of probability value <strong>p<sub>i</sub></strong> assigned to each of the values taken by the discrete random variables <strong>x<sub>i</sub></strong>.</span></p>
|
|
</td>
|
|
<td>
|
|
<figure class="image"><img src=""></figure>
|
|
<figure class="image"><img src=""></figure>
|
|
</td>
|
|
<td>
|
|
<figure class="image"><img src=""></figure>
|
|
<figure class="image"><img src=""></figure>
|
|
<figure class="image"><img src=""></figure>
|
|
</td>
|
|
</tr>
|
|
<tr>
|
|
<td style="text-align:center;"><span style="font-family:Arial, Helvetica, sans-serif;"><strong>Jointly Distributed</strong></span></td>
|
|
<td>
|
|
<figure class="image"><img src=""></figure>
|
|
<p><span style="font-family:Arial, Helvetica, sans-serif;">satisfying </span></p>
|
|
<figure class="image"><img src=""></figure>
|
|
</td>
|
|
<td>
|
|
<figure class="image"><img src=""></figure>
|
|
<p><span style="font-family:Arial, Helvetica, sans-serif;">satisfying </span></p>
|
|
<figure class="image"><img src=""></figure>
|
|
</td>
|
|
</tr>
|
|
<tr>
|
|
<td style="text-align:center;"><span style="font-family:Arial, Helvetica, sans-serif;"><strong>Joint Cumulative</strong></span></td>
|
|
<td>
|
|
<figure class="image"><img src=""></figure>
|
|
<figure class="image"><img src=""></figure>
|
|
</td>
|
|
<td>
|
|
<figure class="image"><img src=""></figure>
|
|
</td>
|
|
</tr>
|
|
<tr>
|
|
<td style="text-align:center;">
|
|
<p><span style="font-family:Arial, Helvetica, sans-serif;"><strong>Marginal Probability</strong></span></p>
|
|
<p>Obtained by summing or integrating the joint probability distribution over the values of the other random variable.</p>
|
|
</td>
|
|
<td>
|
|
<figure class="image"><img src=""></figure>
|
|
</td>
|
|
<td>
|
|
<figure class="image"><img src=""></figure>
|
|
</td>
|
|
</tr>
|
|
<tr>
|
|
<td style="text-align:center;">
|
|
<p><strong>Conditional Probability</strong></p>
|
|
<p>The probabilistic properties of the random variable X under the knowledge provided by the value of Y.</p>
|
|
</td>
|
|
<td>
|
|
<figure class="image"><img src=""></figure>
|
|
</td>
|
|
<td>
|
|
<figure class="image"><img src=""></figure>
|
|
</td>
|
|
</tr>
|
|
<tr>
|
|
<td style="text-align:center;">
|
|
<p><strong>Independence</strong></p>
|
|
<p>Two random variables X and Y are said to be independent if:</p>
|
|
</td>
|
|
<td>
|
|
<figure class="image"><img src=""></figure>
|
|
<p>for all values <strong>i</strong> of X and <strong>j</strong> of Y.</p>
|
|
</td>
|
|
<td>
|
|
<figure class="image"><img src=""></figure>
|
|
<p>for all X and Y.</p>
|
|
</td>
|
|
</tr>
|
|
</tbody>
|
|
</table>
|
|
</figure>
|
|
<p> </p>
|