Files
wiki/education/statistics/random-variable.html

52 lines
32 KiB
HTML

<!--
title: 隨機變數 (Random Variable)
description:
published: true
date: 2025-12-28T19:29:00.292Z
tags:
editor: ckeditor
dateCreated: 2025-12-28T16:41:51.938Z
-->
<h2>Discrete</h2>
<h3>Probability Mass Function (PMF)</h3>
<p>A set of probability value <strong>p<sub>i</sub></strong> assigned to each of the values taken by the discrete random variables <strong>x<sub>i</sub></strong>.</p>
<figure class="image"><img src=""></figure>
<p><br><strong>Probability</strong></p>
<figure class="image"><img src=""></figure>
<p><br><strong>Expectation</strong></p>
<figure class="image"><img src=""></figure>
<p>&nbsp;</p>
<h3>Cumulative Distribution Function (CDF)</h3>
<p>A set of probability value <strong>p<sub>i</sub></strong> assigned to each of the values taken by the discrete random variables <strong>x<sub>i</sub></strong>.</p>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<p>&nbsp;</p>
<h2>Continuous</h2>
<h3>Probability Density Function (PDF)</h3>
<p>Probabilistic properties of a continuous random variable.</p>
<figure class="image"><img src=""></figure>
<p>&nbsp;</p>
<p><strong>Expectation</strong></p>
<figure class="image"><img src=""></figure>
<p>&nbsp;</p>
<h3>Cumulative Distribution Function (CDF)</h3>
<p>Probabilistic properties of a continuous random variable.</p>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<p>&nbsp;</p>
<h3>Symmetric</h3>
<p>If there is a point that,</p>
<figure class="image"><img src=""></figure>
<p>Then,</p>
<figure class="image"><img src=""></figure>
<p>Is the expectation of this random variable, equal to the point of symmetry.</p>
<p>&nbsp;</p>
<h3>Median and Quantiles</h3>
<p>The middle value of the random variable.<br>For median, set <strong>p</strong> to <strong>0.5</strong>.</p>
<figure class="image"><img src=""></figure>
<p>&nbsp;</p>
<h3>Variance</h3>
<p>A positive quantity that measures the spread of the distribution of the random variable about its mean value.<br>Larger values of the variance indicate that the distribution is more spread out.</p>