38 lines
38 KiB
HTML
38 lines
38 KiB
HTML
<!--
|
|
title: 二項式定理 (Binomial Theorem)
|
|
description:
|
|
published: true
|
|
date: 2026-02-11T17:24:46.603Z
|
|
tags:
|
|
editor: ckeditor
|
|
dateCreated: 2026-02-11T17:24:46.603Z
|
|
-->
|
|
|
|
<h2><span style="font-family:Arial, Helvetica, sans-serif;">Fundamental Principle</span></h2>
|
|
<p><span style="font-family:Arial, Helvetica, sans-serif;">The product of first n positive integer, can be called as n factorial, and noted as n!</span></p>
|
|
<figure class="image"><img src=""></figure>
|
|
<figure class="image"><img src=""></figure>
|
|
<p><span style="font-family:Arial, Helvetica, sans-serif;">Note, the special case defined, </span></p>
|
|
<figure class="image"><img src=""></figure>
|
|
<p> </p>
|
|
<p><span style="font-family:Arial, Helvetica, sans-serif;">When we pick r objects from n objects, if the order matters, it is called as permutation, and we notate it as nPr.</span></p>
|
|
<figure class="image"><img src=""></figure>
|
|
<figure class="image"><img src=""></figure>
|
|
<p> </p>
|
|
<p><span style="font-family:Arial, Helvetica, sans-serif;">If the order is unimportant, we can use combination, which is nCr.</span></p>
|
|
<p><span style="font-family:Arial, Helvetica, sans-serif;">The extra r! is the permutation in the specific set drawn out.</span></p>
|
|
<figure class="image"><img src=""></figure>
|
|
<figure class="image"><img src=""></figure>
|
|
<p> </p>
|
|
<figure class="image"><img src=""></figure>
|
|
<figure class="image"><img src=""></figure>
|
|
<figure class="image"><img src=""></figure>
|
|
<p> </p>
|
|
<p><span style="font-family:Arial, Helvetica, sans-serif;">Note,</span></p>
|
|
<figure class="image"><img src=""></figure>
|
|
<p><span style="font-family:Arial, Helvetica, sans-serif;">There will be n+1 th term.</span></p>
|
|
<p><span style="font-family:Arial, Helvetica, sans-serif;">The sum of power of x and y will equal to n.</span></p>
|
|
<p><span style="font-family:Arial, Helvetica, sans-serif;">The r+1 th term can be called as the general term, in the descending power of x.</span></p>
|
|
<figure class="image"><img src=""></figure>
|
|
<p><span style="font-family:Arial, Helvetica, sans-serif;">The coefficients, r=0, 1 … are called binomial coefficients.</span></p>
|