32 lines
13 KiB
HTML
32 lines
13 KiB
HTML
<!--
|
|
title: 數學歸納法 (Mathematical Induction)
|
|
description:
|
|
published: true
|
|
date: 2026-02-11T17:20:14.172Z
|
|
tags:
|
|
editor: ckeditor
|
|
dateCreated: 2026-02-11T17:14:35.544Z
|
|
-->
|
|
|
|
<h2><span style="font-family:Arial, Helvetica, sans-serif;">Fundamental Principle</span></h2>
|
|
<p><span style="font-family:Arial, Helvetica, sans-serif;">Mathematical induction is a method used to prove that a statement holds true for all natural numbers k.</span></p>
|
|
<p><span style="font-family:Arial, Helvetica, sans-serif;">Let P(n) be a statement defined for each positive integer n.</span></p>
|
|
<p><span style="font-family:Arial, Helvetica, sans-serif;">Then P(n) will be true for all positive integers n if the following two conditions are satisfied:</span></p>
|
|
<p><span style="font-family:Arial, Helvetica, sans-serif;">(1) P(1) is true.</span></p>
|
|
<p><span style="font-family:Arial, Helvetica, sans-serif;">(2) P(k) is true for some integer k + 1 implies that P(k + 1) is true.</span></p>
|
|
<p><span style="font-family:Arial, Helvetica, sans-serif;">Because all the other values can use the result from the (1) and (2),</span></p>
|
|
<p><span style="font-family:Arial, Helvetica, sans-serif;">Therefore, you can conclude that all the conditions with integers n are true.</span></p>
|
|
<p> </p>
|
|
<h2><span style="font-family:Arial, Helvetica, sans-serif;">E1 Example</span></h2>
|
|
<p><span style="font-family:Arial, Helvetica, sans-serif;">Q Prove the following for all positive n:</span></p>
|
|
<figure class="image"><img src=""></figure>
|
|
<p><span style="font-family:Arial, Helvetica, sans-serif;">A For n = 1, </span></p>
|
|
<figure class="image"><img src=""></figure>
|
|
<p><span style="font-family:Arial, Helvetica, sans-serif;">The statement is true for n = 1.</span></p>
|
|
<p><span style="font-family:Arial, Helvetica, sans-serif;">For n = k + 1, Assume the statement is true for some integer k >= 1.</span></p>
|
|
<figure class="image"><img src=""></figure>
|
|
<figure class="image"><img src=""></figure>
|
|
<figure class="image"><img src=""></figure>
|
|
<figure class="image"><img src=""></figure>
|
|
<p><span style="font-family:Arial, Helvetica, sans-serif;">The statement is true for n = k + 1. By the principle of mathematical induction, the statement is true for all positive integers n.</span></p>
|