Files
wiki/education/statistics/4.html

87 lines
93 KiB
HTML

<!--
title: 4
description:
published: true
date: 2026-02-11T14:34:15.113Z
tags:
editor: ckeditor
dateCreated: 2026-02-11T14:34:15.113Z
-->
<h2><span style="font-family:Arial, Helvetica, sans-serif;">General</span></h2>
<h3><span style="font-family:Arial, Helvetica, sans-serif;">One Sample proportion test</span></h3>
<figure class="image"><img src=""></figure>
<p><span style="font-family:Arial, Helvetica, sans-serif;">&nbsp;when&nbsp;</span></p>
<figure class="image"><img src=""></figure>
<p>&nbsp;</p>
<p><span style="font-family:Arial, Helvetica, sans-serif;"><strong>Confidence Interval</strong></span></p>
<figure class="image"><img src=""></figure>
<p>&nbsp;</p>
<p><span style="font-family:Arial, Helvetica, sans-serif;"><strong>Maximum Error Estimate</strong></span></p>
<figure class="image"><img src=""></figure>
<p>&nbsp;</p>
<h3><span style="font-family:Arial, Helvetica, sans-serif;">Analysis of Count Data</span></h3>
<p><span style="font-family:Arial, Helvetica, sans-serif;">Setting&nbsp;H0 and H1:</span></p>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<p>&nbsp;</p>
<p><span style="font-family:Arial, Helvetica, sans-serif;">Test statistics:</span></p>
<figure class="image"><img src=""></figure>
<p><span style="font-family:Arial, Helvetica, sans-serif;">Where</span></p>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<p>&nbsp;</p>
<p><span style="font-family:Arial, Helvetica, sans-serif;"><strong>Confidence Interval</strong></span></p>
<figure class="image"><img src=""></figure>
<p>&nbsp;</p>
<h3><span style="font-family:Arial, Helvetica, sans-serif;">Test the Differences Among Proportions</span></h3>
<p><span style="font-family:Arial, Helvetica, sans-serif;">Setting&nbsp;H0 and H1:</span></p>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<p><span style="font-family:Arial, Helvetica, sans-serif;">&nbsp;</span></p>
<p><span style="font-family:Arial, Helvetica, sans-serif;">Test statistics:</span></p>
<figure class="image"><img src=""></figure>
<p><span style="font-family:Arial, Helvetica, sans-serif;">Where o is observed frequency, and e is expected frequency.</span></p>
<figure class="image"><img src=""></figure>
<p><span style="font-family:Arial, Helvetica, sans-serif;">&nbsp;when we compare k sample proportion.</span></p>
<p>&nbsp;</p>
<h3><span style="font-family:Arial, Helvetica, sans-serif;">The Chi-Square Independence and Homogeneity Tests</span></h3>
<p><span style="font-family:Arial, Helvetica, sans-serif;">Tests using Contingency Tables</span></p>
<p><span style="font-family:Arial, Helvetica, sans-serif;">Setting&nbsp;H0 and H1:</span></p>
<p>&nbsp;</p>
<figure class="table">
<table style="border-bottom:none;border-left:none;border-right:none;border-top:none;">
<tbody>
<tr>
<td style="border-bottom:1.0pt solid windowtext;border-left:1.0pt solid windowtext;border-right:1.0pt solid windowtext;border-top:1.0pt solid windowtext;padding:0mm 5.4pt;vertical-align:top;width:522.8pt;">
<p><span style="font-family:Arial, Helvetica, sans-serif;">Testing for Independence:</span></p>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
</td>
</tr>
<tr>
<td style="border-bottom:1.0pt solid windowtext;border-left:1.0pt solid windowtext;border-right:1.0pt solid windowtext;border-top:1.0pt none windowtext;padding:0mm 5.4pt;vertical-align:top;width:522.8pt;">
<p><span style="font-family:Arial, Helvetica, sans-serif;">Testing for Homogeneity:</span></p>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
</td>
</tr>
</tbody>
</table>
</figure>
<p>&nbsp;</p>
<p><span style="font-family:Arial, Helvetica, sans-serif;">Test statistics:</span></p>
<figure class="image"><img src=""></figure>
<p><span style="font-family:Arial, Helvetica, sans-serif;">Where o is observed frequency, and e is expected frequency.</span></p>
<figure class="image"><img src=""></figure>
<p>&nbsp;</p>
<p><span style="font-family:Arial, Helvetica, sans-serif;">For each cell of the contingency table, use</span></p>
<figure class="image"><img src=""></figure>
<p>&nbsp;</p>
<h3><span style="font-family:Arial, Helvetica, sans-serif;">Chi-Square test for goodness of fitness</span></h3>
<p><span style="font-family:Arial, Helvetica, sans-serif;">Setting&nbsp;H0 and H1:</span></p>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>