Files
wiki/education/statistics/random-variable.html

159 lines
142 KiB
HTML

<!--
title: 隨機變數 (Random Variable)
description:
published: true
date: 2025-12-29T05:56:48.006Z
tags:
editor: ckeditor
dateCreated: 2025-12-28T16:41:51.938Z
-->
<h2><span style="font-family:Arial, Helvetica, sans-serif;">General</span></h2>
<h3><span style="font-family:Arial, Helvetica, sans-serif;">Symmetric</span></h3>
<p><span style="font-family:Arial, Helvetica, sans-serif;">If there is a point that,</span></p>
<figure class="image"><img src=""></figure>
<p><span style="font-family:Arial, Helvetica, sans-serif;">Then,</span></p>
<figure class="image"><img src=""></figure>
<p><span style="font-family:Arial, Helvetica, sans-serif;">Is the expectation of this random variable, equal to the point of symmetry.</span></p>
<p>&nbsp;</p>
<h3><span style="font-family:Arial, Helvetica, sans-serif;">Median and Quantiles</span></h3>
<p><span style="font-family:Arial, Helvetica, sans-serif;">The middle value of the random variable.</span><br><span style="font-family:Arial, Helvetica, sans-serif;">For median, set <strong>p</strong> to <strong>0.5</strong>.</span></p>
<figure class="image"><img src=""></figure>
<p>&nbsp;</p>
<h3><span style="font-family:Arial, Helvetica, sans-serif;">Variance</span></h3>
<p><span style="font-family:Arial, Helvetica, sans-serif;">A positive quantity that measures the spread of the distribution of the random variable about its mean value.</span><br><span style="font-family:Arial, Helvetica, sans-serif;">Larger values of the variance indicate that the distribution is more spread out.</span></p>
<figure class="image"><img src=""></figure>
<p>&nbsp;</p>
<h3><span style="font-family:Arial, Helvetica, sans-serif;">Covariance</span></h3>
<p><span style="font-family:Arial, Helvetica, sans-serif;">Independent random variables have a covariance of zero.</span></p>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<p>&nbsp;</p>
<h3><span style="font-family:Arial, Helvetica, sans-serif;">Correlation</span></h3>
<p><span style="font-family:Arial, Helvetica, sans-serif;">Values between -1 and 1, and independent random variables have a correlation of zero.</span></p>
<figure class="image"><img src=""></figure>
<p>&nbsp;</p>
<p><span style="font-family:Arial, Helvetica, sans-serif;">What if random variable X and Y have linear relationship, that is</span></p>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<p>&nbsp;</p>
<figure class="image"><img src=""></figure>
<p><span style="font-family:Arial, Helvetica, sans-serif;">That is,&nbsp;</span></p>
<figure class="image"><img src=""></figure>
<p>&nbsp;</p>
<h2><span style="font-family:Arial, Helvetica, sans-serif;">Distribution Function</span></h2>
<figure class="table">
<table>
<tbody>
<tr>
<td style="text-align:center;width:300px;">&nbsp;</td>
<td style="text-align:center;width:500px;"><span style="font-family:Arial, Helvetica, sans-serif;"><strong>Discrete</strong></span></td>
<td style="text-align:center;width:500px;"><span style="font-family:Arial, Helvetica, sans-serif;"><strong>Continuous</strong></span></td>
</tr>
<tr>
<td style="text-align:center;">
<p><span style="font-family:Arial, Helvetica, sans-serif;"><strong>Probability</strong></span></p>
<p><span style="font-family:Arial, Helvetica, sans-serif;">A set of probability value <strong>p<sub>i</sub></strong> assigned to each of the values taken by the discrete random variables <strong>x<sub>i</sub></strong>.</span></p>
</td>
<td>
<p><span style="font-family:Arial, Helvetica, sans-serif;"><strong>Probability Mass Function (PMF)</strong></span></p>
<figure class="image"><img src=""></figure>
<p><br><span style="font-family:Arial, Helvetica, sans-serif;"><strong>Probability</strong></span></p>
<figure class="image"><img src=""></figure>
<p><br><span style="font-family:Arial, Helvetica, sans-serif;"><strong>Expectation</strong></span></p>
<figure class="image"><img src=""></figure>
</td>
<td>
<p><span style="font-family:Arial, Helvetica, sans-serif;"><strong>Probability Density Function (PDF)</strong></span></p>
<p><span style="font-family:Arial, Helvetica, sans-serif;">Probabilistic properties of a continuous random variable.</span></p>
<figure class="image"><img src=""></figure>
<p>&nbsp;</p>
<p><span style="font-family:Arial, Helvetica, sans-serif;"><strong>Expectation</strong></span></p>
<figure class="image"><img src=""></figure>
</td>
</tr>
<tr>
<td style="text-align:center;">
<p><span style="font-family:Arial, Helvetica, sans-serif;"><strong>Cumulative</strong></span></p>
<p><span style="font-family:Arial, Helvetica, sans-serif;">A set of probability value <strong>p<sub>i</sub></strong> assigned to each of the values taken by the discrete random variables <strong>x<sub>i</sub></strong>.</span></p>
</td>
<td>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
</td>
<td>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
</td>
</tr>
<tr>
<td style="text-align:center;"><span style="font-family:Arial, Helvetica, sans-serif;"><strong>Jointly Distributed</strong></span></td>
<td>
<figure class="image"><img src=""></figure>
<p><span style="font-family:Arial, Helvetica, sans-serif;">satisfying&nbsp;</span></p>
<figure class="image"><img src=""></figure>
</td>
<td>
<figure class="image"><img src=""></figure>
<p><span style="font-family:Arial, Helvetica, sans-serif;">satisfying&nbsp;</span></p>
<figure class="image"><img src=""></figure>
</td>
</tr>
<tr>
<td style="text-align:center;"><span style="font-family:Arial, Helvetica, sans-serif;"><strong>Joint Cumulative</strong></span></td>
<td>
<figure class="image"><img src=""></figure>
<figure class="image"><img src=""></figure>
</td>
<td>
<figure class="image"><img src=""></figure>
</td>
</tr>
<tr>
<td style="text-align:center;">
<p><span style="font-family:Arial, Helvetica, sans-serif;"><strong>Marginal Probability</strong></span></p>
<p><span style="font-family:Arial, Helvetica, sans-serif;">Obtained by summing or integrating the joint probability distribution over the values of the other random variable.</span></p>
</td>
<td>
<figure class="image"><img src=""></figure>
</td>
<td>
<figure class="image"><img src=""></figure>
</td>
</tr>
<tr>
<td style="text-align:center;">
<p><span style="font-family:Arial, Helvetica, sans-serif;"><strong>Conditional Probability</strong></span></p>
<p><span style="font-family:Arial, Helvetica, sans-serif;">The probabilistic properties of the random variable <strong>X</strong> under the knowledge provided by the value of <strong>Y</strong>.</span></p>
</td>
<td>
<figure class="image"><img src=""></figure>
</td>
<td>
<figure class="image"><img src=""></figure>
</td>
</tr>
<tr>
<td style="text-align:center;">
<p><span style="font-family:Arial, Helvetica, sans-serif;"><strong>Independence</strong></span></p>
<p><span style="font-family:Arial, Helvetica, sans-serif;">Two random variables <strong>X</strong> and <strong>Y</strong> are said to be independent if:</span></p>
</td>
<td>
<figure class="image"><img src=""></figure>
<p><span style="font-family:Arial, Helvetica, sans-serif;">for all values <strong>i</strong> of X and <strong>j</strong> of Y.</span></p>
</td>
<td>
<figure class="image"><img src=""></figure>
<p><span style="font-family:Arial, Helvetica, sans-serif;">for all X and Y.</span></p>
</td>
</tr>
</tbody>
</table>
</figure>
<p>&nbsp;</p>